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Abstract. We study a market model in which the volatility of the stock may jump at a random time from
a fixed value to another fixed value. This model has already been introduced in the literature. We present a
new approach to the problem, based on partial differential equations, which gives a different perspective to
the issue. Within our framework we can easily consider several forms for the market price of volatility risk,
and interpret their financial meaning. We thus recover solutions previously mentioned in the literature as
well as obtaining new ones.

PACS. 02.30.Jr Partial differential equations – 02.50.Ey Stochastic processes – 02.70.Uu Applications of
Monte Carlo methods – 89.65.Gh Economics; econophysics, financial markets, business and management

1 Introduction

The problem of pricing financial derivatives was already
present in the aim of early works in Mathematical Finance.
In 1900, Bachelier [1] proposed arithmetic Brownian mo-
tion for the dynamical evolution of stock prices as a first
step towards obtaining a price for an option. Neverthe-
less, interest in this problem has increased remarkably in
the past thirty years, after the publication of the works of
Black and Scholes [2], and Merton [3]. The Black-Scholes
model has been broadly used by practitioners since then,
mainly due to its mathematical simplicity. It is well es-
tablished, however, that this model fails to explain some
statistical features shown in real markets. In particular,
there is solid evidence pointing to the necessity of relax-
ing the assumption, present in the Black-Scholes model,
that a constant volatility parameter drives the stock price.
One of most commonly used tests is based on a concep-
tually simple principle. Since the Black-Scholes price is a
monotonous function on its arguments, the formula can be
inverted in order to compute the implied volatility, i.e. the
volatility that will reproduce the actual market conditions.
The usual result is that the implied volatility is not con-
stant, but a U-shaped function of the moneyness, whose
minimum is at moneyness near to one —i.e. when the
current price of the underlying is close to the strike. This
departure from the Black-Scholes model is known as the
smile effect , and it is well documented in the literature [4].

Many models have been developed with the purpose of
avoiding this restrictive feature. We will mention only a
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few of them here. Merton himself [5] proposed a model in
which volatility was a deterministic function of time. Cox
and Ross [6] presented some alternative proposals that can
be thought of as models in which the volatility is stock-
dependent. These and other similar contributions lead to
a framework in which all the option risk comes from the
fluctuations in the price of the underlying. In practical sit-
uations, however, it seems that this description is not so-
phisticated enough for explaining the actual changes in the
level of volatility. Some authors have then suggested that
the evolution of the volatility is driven by its own stochas-
tic equation. Among these models of stochastic volatility
we find works that are historically noteworthy. Hull and
White [7] proposed a model where the squared volatility
also follows a log-normal diffusion equation, regardless of
the stock price. Wiggins [8] extended this idea and con-
sidered that the underlying and the volatility constitute a
two-dimensional system of correlated log-normal random
processes. Scott [9], and Stein and Stein [10] in particu-
lar, assumed that instantaneous volatility follows a ran-
dom mean-reverting process: an independent arithmetic
Ornstein-Uhlenbeck process. Masoliver and Perelló [11] re-
laxed this assumption, and introduced correlation into the
two-dimensional Wiener process. Heston [12] turned the
arithmetic model into a square-root correlated process.

The common feature of all these seminal papers is that
they model the stochastic behaviour of volatility as a dif-
fusion process. Naik [13] developed a model in which the
volatility can take only two known values, and the market
switches back and forth between them, in a random way.
This set-up can be used to model a market with high and
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low volatility periods. Herzel [14] studied a simplified ver-
sion of this problem, in which the volatility can at most
jump once. This is a suitable model for encoding a mar-
ket that may undergo a severe change in volatility only if
some forthcoming event takes place. Since options have a
limited lifetime, this does not seem to be a very restrictive
limitation. Herzel formally solved the problem of pricing
the options using probability arguments, and showed that
his model can account for the smile effect.

We present here a different approach for obtaining fair
option prices under Herzel’s assumptions. We will employ
a technique used extensively both in research papers (e.g.
in [12]) and reference books (e.g. in [15]) on this topic: we
determine the partial differential equation that the option
price must fulfil, according to Itô’s formula, and solve it
with the appropriate constraints. This scheme eases the
task of considering different forms for the market price of
volatility risk, and leads to a simple way of interpreting
the financial meaning of each.

The paper is structured as follows: in Section 2 we
present the general market model and specify the differ-
ential equations that govern the traded securities. In Sec-
tion 3 we study the way of obtaining a complete market. In
Section 4 we explore the consequences of demanding that
the market admits no arbitrage. In Section 5 we present
explicit solutions when the market price of the volatility
risk is uniform in time, for two typical contract specifica-
tions. In Section 6 we consider more complex scenarios in
which the volatility premium is not constant but depends
on different variables. Section 7 contains actual numer-
ical examples of several solutions and goes into further
depth in the financial interpretation of the results. The
conclusions are drawn in Section 8. The paper ends with
Appendix A, where we detail an alternative approach that
gives more financial insights to one of the new solutions
we have introduced.

2 The market model

Let us begin with the general description of our set-up.
We will assume that in our market there is at least a non-
deterministic traded stock, S. The evolution of the price of
this stock, from S0 at t = t0, is governed by the following
differential equation1:

dS

S
= µdt+ σdW, (1)

where W (t − t0) is a one dimensional Brownian motion,
with zero mean and variance equal to t−t0, µ is a constant
parameter, and σ, the volatility, is a stochastic quantity.
The model assumes that the volatility initially has a given
value σa, and that at most it may change to a different
value σb at instant τ > t0:

σ(t; τ) = σa1t<τ + σb1t≥τ = σa + (σb − σa)1t≥τ , (2)

1 Throughout our exposition we will not specify the explicit
dependence of the involved magnitudes, unless this may lead
to confusion.

where 1{·} denotes the indicator function, which assigns
the value 1 to a true statement, and the value 0 to a false
statement. The time τ in which such transition occurs is
random and we will assume that it follows an exponen-
tial law:

P (t0 < τ ≤ t) = 1 − e−λ(t−t0).

Note that with the previous definition, λ is merely the
inverse of the mean transition time, E[τ − t0] = λ−1.

We also assume that we will be capable of conclud-
ing whether the transition has taken place or not. This
assumption does not imply that we can directly measure
the value of σ, but that there is a way to determine if
t ≥ τ . This can be easily understood from the point of
view of a practitioner. Let us suppose, for instance, that
we are expecting a relevant financial announcement to be
made. We do not know for sure when this will happen, but
we believe that the new information will affect the level
of volatility in our market. Even though we may not per-
form an instantaneous measure of the volatility in order
to check the actual effect of the news, we can know if they
are simply published. We will return to this issue later.

For the underlying stock S, we will define a new traded
asset: the option C. The price of this option will depend
explicitly on the moment t0 in which we will decide to
evaluate it, on the current stock price S0 and on the level
of volatility σ0, but also on a set of particular parameters
which we will label with a single symbol, κ. These param-
eters are the contract specifications that will characterize
the option, including the maturity time or the striking
price. This framework covers the European put and call
options, e.g. the vanilla options or the Binary options,
and the American options as well, but does not include
more exotic derivatives, such as the Asian options or the
lookback options.

The differential of the option price C = C(t, S, σ;κ)
has, according to Itô’s formula, the following expression:

dC = ∂tCdt+ ∂SCdS +
1
2
σ2S2∂2

SSCdt+
∆C

σb − σa
dσ, (3)

where
∆C ≡ C(t, S, σb;κ) − C(t, S, σa;κ).

The last term in equation (3) condenses innovation with
respect to the classical Black-Scholes expression, and rep-
resents the contribution of the randomness in the volatil-
ity to the dynamics of the option price. Note that this
extra term is a product of the finite difference version of
the derivative of C with respect to σ, and dσ. In order
to obtain an alternative expression for this object, we will
simply differentiate equation (2):

dσ = (σb − σa)d1t≥τ . (4)

The differential of an indicator with a random variable in
its argument may seem a bizarre object. However, it is
mathematically well defined, as we will shortly show. We
can decompose this differential in two terms:

d1t≥τ = λ1t<τdt− λdG. (5)
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The first term is regular, and the second involves G,

G = t1t<τ +
(
τ − 1

λ

)
1t≥τ ,

which is proven to be a right continuous with left lim-
its martingale. Nevertheless, in order to make the nota-
tion easier, we will keep the differential of the indicator
in its early form, and use the referred decomposition only
when it can clarify the problem. However, we must stress
that d1t≥τ is a stochastic magnitude, independent of dW .
Since dσ does not directly contribute to the variation of
the stock price dS, we can foresee that there is a source
of risk that cannot be explained in terms of the random
evolution of the underlying asset. However, we will deal
with this issue in the next section.

Before doing so, we would like to point out that there
is also a third kind of security traded in the market, a
free-risk monetary asset B, which satisfies:

dB = rBdt. (6)

This security will provide a secure resort where to keep
the benefits of an effective investment strategy, but also
allow us to borrow money when we need it. Therefore,
it makes possible both the self-financing strategy, which
allows closed portfolios, and the net-zero investment , the
composition of a portfolio with no net value.

3 Completeness of the market

Let us face the problem of the completeness of the mar-
ket. It is well-known that the market will be complete if
we can construct the so-called replicating portfolio for ev-
ery security, i.e. a portfolio that mimics the behaviour of
the asset. We have argued in the previous section that not
all the influence of σ on the price of the option can be
explained through S. We therefore need another security
that can account for this component of the global risk.
Instead of introducing a new traded asset depending only
on dσ, with no clear financial interpretation, we have de-
cided to use a secondary option D(t, S, σ;κ′): a derivative
of the same nature of C(t, S, σ;κ), but with a different set
of contract specifications. This add-on completes the mar-
ket if we are allowed to borrow money at a fixed interest
rate whenever we need it, or to buy zero-coupon bonds in
the event that we obtain a surplus of cash. We can thus
write down C as a combination of δ shares S, φ units of
the riskless security B, and ψ secondary options D:

C = δS + φB + ψD.

The variation in the value of both portfolios fulfills

dC = δdS + φdB + ψdD,

where we have taken into account two capital facts. On
one hand δ, φ and ψ are predictable functions of S and D,
e.g. dδ, dφ and dψ do not depend on the new random
information in dW and dσ. On the other hand, we adopt

a self-financing strategy, in which there is no net cash flow
entering or leaving the replicating portfolio [16]:

Sdδ +Bdφ+Ddψ = 0.

We will replace dC with the expression in (3), and we
will take into account the properties shown in (4) and (6),
to finally obtain:

∂tCdt+ ∂SCdS +
1
2
σ2S2∂2

SSCdt+∆Cd1t≥τ =

δdS + rφBdt + ψdD. (7)

We can proceed with dD in an analogous way,

dD = ∂tDdt+ ∂SDdS +
1
2
σ2S2∂2

SSDdt+∆Dd1t≥τ , (8)

where the natural definition of ∆D,

∆D = D(t, S, σb;κ′) −D(t, S, σa;κ′),

has been used. In order to recover a deterministic par-
tial differential equation we must guarantee that all the
terms containing the stochastic magnitudes dS and d1t≥τ

mutually cancel out. Thus we must demand that

∂SC = δ + ψ∂SD,

condition named delta hedging, and also that

∆C = ψ∆D,

which is usually referred as vega hedging, or sometimes as
psi hedging [17].

The previous hedging conditions reduce equation (7) to

∂tCdt+
1
2
σ2S2∂2

SSCdt =

rφBdt +
∆C

∆D

(
∂tDdt+

1
2
σ2S2∂2

SSDdt

)
, (9)

an expression that still involves B, which is not an inner
variable of the option prices C and D. This problem can
be fixed using the definition of the portfolio and the psi
hedging together,

φB = C− δS−ψD = C−
(
∂SC − ∆C

∆D
∂SD

)
S− ∆C

∆D
D.

The replacement of φB in equation (9) thus leads to

∂tC +
1
2
σ2S2∂2

SSC − rC + rS∂SC =

∆C

∆D

(
∂tD +

1
2
σ2S2∂2

SSD − rD + rS∂SD

)
.

This formula implies the existence of an arbitrary function
χ = χ(t, S, σ), which uncouples the problem of finding C
and D:

χ(t, S, σ) =
1
∆C

(
∂tC +

1
2
σ2S2∂2

SSC − rC + rS∂SC

)
.

(10)
Obviously the same formula is valid for the secondary
option, merely by replacing C with D. This fact proves
that the option D completes the market indeed [17,18].
Note that if we set χ(t, S, σ) = 0 we recover the classical
Black-Scholes equation.
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4 Arbitrage-free scenario

We have to state some criterion before we can choose a
valid candidate for χ(t, S, σ). We will first determine the
meaning of this arbitrary function. Consider Y , a portfo-
lio which involves shares, bonds, one primary option, and
secondary options:

Y = C + δ̄S + φ̄B + ψ̄D. (11)

We will choose the relative amount of each security in
such a way that at the beginning, the portfolio has no
net value, i.e. Y = 0. Moreover, we will also require the
changes in the value of the portfolio not to come from a
cash flow. These assumptions will ease the forthcoming
discussion because, in demanding that, we have removed
both riskless and externally induced growth of the port-
folio. Imagine now that we can show that, under these
conditions, the future evolution in the valuation of the
portfolio never becomes negative. We would have designed
a financial instrument for making money, with safety and
no initial investment required. In other words, this would
be proof that our market presents arbitrage opportunities.
Obviously, a reciprocal scenario in which a change in the
value of the portfolio necessarily implies a depreciation
also leads to arbitrage. We may just build the opposite
portfolio, Ȳ = −Y , and obtain guaranteed profits without
any exposure of capital. The presence of arbitrage in other
portfolios will lead back to the same constraints on Y . We
must therefore analyse dY and prevent it from having a
definite sign.

The predictable nature of δ̄, φ̄, and ψ̄ makes dY take
the following form:

dY = dC + δ̄dS + φ̄dB + ψ̄dD. (12)

First we can combine equations (6) and (11),

φ̄dB = rφ̄Bdt = r
(
Y − C − δ̄S − ψ̄D

)
,

to cancel out the bond term in (12):

dY = dC + δ̄dS − r
(
C + δ̄S + ψ̄D

)
dt+ ψ̄dD.

Then we can use equations (3), (4), (8), and (10) in order
to obtain:

dY = (∆C + ψ̄∆D) (χdt+ d1t≥τ )

+ (δ̄ + ∂SC + ψ̄∂SD)(dS − rSdt).

Finally, we will remove all the dependence in dS, just set-
ting δ̄ = −∂SC − ψ̄∂SC,

dY = (∆C + ψ̄∆D) (χdt+ d1t≥τ ) . (13)

The reason for this last step is quite simple. Note that
dS − rSdt = (µ− r)Sdt+ σSdW can have any real value.
That is, it cannot be a source of arbitrage possibilities,
adding nothing but uncertainty in the behaviour of the
null portfolio. If we are looking for some sort of predictabil-
ity in the sign of dY , we must therefore make that term
disappear.

An initial analysis of equation (13) quickly reveals that
the sign of dY depends in turn on the behaviour of both
factors: (∆C+ ψ̄∆D) and (χdt+ d1t≥τ ). Let us check the
first. The sign of ∆C and ∆D is predictable, because op-
tion prices have a monotonous response to changes in the
volatility. The value of ψ̄ can be chosen at our convenience
in this portfolio, and as a result, unless we set it equal to
ψ̄ = −∆C/∆D, the first term will have a definite sign.
We will avoid this setting however, because it leads back
to the perfect hedging case, in which dY ≡ 0.

Summing up, we have only to concern ourselves with
the sign of (χdt+ d1t≥τ ). The output of our analysis
will thus determine the constraints we must demand on
χ(t, S, σ) in order to prevent dY to have definite sign. At
this point it will be very advisable to remember the de-
composition of d1t≥τ stated in equation (5),

dY = (∆C + ψ̄∆D) ((χ+ λ1t<τ ) dt− λdG) , (14)

and to inspect the properties of dG:

dG =




0 t ≥ τ,
dt− λ−1 t < τ ≤ t+ dt,
dt τ > t+ dt.

It is clear that for t ≥ τ , the change in the portfolio re-
duces to dY = (∆C + ψ̄∆D)χdt. But once the jump has
happened, there is no financial reason for having a price
that differs from the Black-Scholes price corresponding to
σ = σb. And this is what we will get if we set χ = 0 right
after the change in the volatility.

When the jump has not yet happened the differen-
tial dY reads:

dY = (∆C + ψ̄∆D) (χdt+ λ(dt− dG)) ,

with (dt− dG) ≥ 0. Therefore we must choose χ < 0
for t < τ . By compiling all this, we obtain the following
formula:

χ(t, S, σ) = −Ω(t, S)1σ=σa = −Ω(t, S)1t<τ ,

where Ω(t, S) is a strictly positive-definite bounded func-
tion depending on t and S. This function Ω may depend,
in a parametric way, on σa and σb, but also on t0 and S0.
In fact, it may also depend in general on some parameters
among those that characterize the contract specifications
but, and this is a crucial point, never on all of them. We
must have in mind that equation (10) must hold at least
for another option D, which is different from C, otherwise
the market will not be complete.

We have shown the mathematical properties that χ
must fulfil although we have gone into very little depth
in its financial interpretation. Let us introduce func-
tion Ψ(t, S, σ),

Ψ(t, S, σ) = (λ−Ω(t, S)) 1t<τ ,

in equation (14),

dY = (∆C + ψ̄∆D) (Ψdt− λdG) ,
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and then evaluate the conditional expectation of dY , for
a given value of S. Since G is a martingale, E[dG] = 0, it
is thus clear that E[dY |S] = E[Ψ |S](∆C+ ψ̄∆D)dt. Thus
Ψ(t, S, σ) measures the market price of the volatility risk,
and it is exogenous to the market itself. It should be the
financial agents who determine this function on the basis
of their own appreciation of the actual risk. For instance,
some authors [17] demand the absence of the so-call statis-
tical arbitrage, i.e. E[dY |S] = 0. This requirement implies
that Ψ = 0, i.e. that Ω = λ.

5 Constant market price for volatility risk

We can now solve equation (10) under appropriate condi-
tions. For example, we shall begin by assuming that Ω = λ̄
is constant, but not necessarily equal to λ,

∂tC +
1
2
σ2S2∂2

SSC − rC + rS∂SC + λ̄∆C1t<τ = 0. (15)

This implies that the risk is considered uniform in time.
We will also consider that the price of the option is con-
strained by the final condition:

C(T, S, σ;K,T ) = Φ(S;K,T ),

which means that it will be a European-style option, where
the price of the derivative in a fixed instant in the future,
the maturity time, only depends on the actual value of the
underlying at that moment and on some reference value,
the strike, K. The function Φ, the payoff, will discriminate
between the options within a same family. For instance,
for the plain vanilla call we have:

C(T, S, σ;K,T ) = max(S(T ) −K, 0). (16)

In addition, the mathematical nature of equation (10) re-
quires the solution to satisfy two extra boundary condi-
tions which, in this case, read

C(t, 0, σ;K,T ) = 0, and, lim
S→∞

C(t, S, σ;K,T )
S

= 1.

Obviously, we have plenty of other Φ functions, such as
the Binary call where the payoff is

C(T, S, σ;K,T ) = 1S(T )≥K , (17)

and where the boundary conditions to be fulfilled are

C(t, 0, σ;K,T ) = 0, and, lim
S→∞

C(t, S, σ;K,T ) = e−r(T−t).

We will not specify now a single function Φ, but for
the moment we will treat all the suitable candidates
at once. Moreover, we will use the term “Black-Scholes
price”, CBS, as a synonymous of the solution of the Black-
Scholes equation for the given payoff, without any further
distinction.

This will be the case when considering equation (15)
for τ ≤ t, since then it reduces to the Black-Scholes model:

∂tC +
1
2
σ2

bS
2∂2

SSC − rC + rS∂SC = 0,

whose solution is accordingly

C(t, S, σb;K,T ) = CBS(t, S, σb;K,T ) ≡ CBS
b .

Nevertheless, we will show the main guidelines for solving
it, because this will illustrate more sophisticated problems
to come. The first step is to introduce two new variables,
t∗ = T − t and x = log(S) +

(
r − σ2

b/2
)
(T − t), and to

assume that C depends on its own arguments only through
them:

C(t, S, σb;K,T ) =

e−r(T−t)V

(
T − t, log(S) +

(
r − σ2

b

2

)
(T − t);K

)
.

This assumption implies the existence of a function of two
variables V (t∗, x;K) that obeys the following differential
equation:

∂t∗V =
1
2
σ2

b∂
2
xxV.

Note that t∗ represents a reversion of the time arrow,
which now starts at maturity. We have thus transformed
our final condition into an initial one:

V (0, x0;K) = Φ(ex0 ;K).

This problem has a straightforward solution:

V (t∗, x;K) =
∫ +∞

−∞
dx0Φ(ex0 ;K)

1√
2πσ2

b t
∗ e

− (x−x0)2

2σ2
b

t∗ ,

(18)
and therefore,

C(t, S, σb;K,T ) =

e−r(T−t)

∫ +∞

−∞

dx0Φ(ex0 ;K)√
2πσ2

b (T − t)
e
−(log(S)+(r−σ2

b
/2)(T−t)−x0)2

2σ2
b
(T−t) ,

(19)

which is the Black-Scholes price. When τ > t the equation
for C(t, S, σa;K,T ) is a little more complex:

∂tC +
1
2
σ2S2∂2

SSC − rC + rS∂SC + λ̄
(
CBS

b − C
)

= 0.

The last term comes from the χ∆C contribution. The key
point is to realize that in the expression for ∆C appears,
not only C(t, S, σb;K,T ), which we have found in equa-
tion (19), but also C(t, S, σa;K,T ), the unknown quantity.
The procedure to follow is very similar to the one for the
previous case. We will again use variable t∗, and define ξ
as ξ = log(S) +

(
r − σ2

a/2
)
(T − t). In fact, x relates to ξ

through x = ξ +
(
σ2

a − σ2
b

)
t∗/2, which will be useful in a

forthcoming step. Now we again assume a particular de-
pendence on the price of this new variables,

C(t, S, σa;K,T ) =

e−(r+λ̄)(T−t)Z

(
T − t, log(S) +

(
r − σ2

a

2

)
(T − t);K

)
,
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where Z(t∗, ξ;K) obeys the following equation,

∂t∗Z =
1
2
σ2

a∂
2
ξξZ + λ̄eλ̄t∗V

(
t∗, ξ +

σ2
a − σ2

b

2
t∗;K

)
,

with the function V of equation (18); and the correspond-
ing initial condition,

Z(0, ξ0;K) = Φ(eξ0 ;K).

After some algebra, its solution reads

C(t, S, σa;K,T ) = e−λ̄(T−t)CBS(t, S, σa;K,T )

+ λ̄

∫ T

t

du e−λ̄(u−t)CBS(t, S, σ̄(u− t, T − t);K,T ),

where some sort of “effective variance”, σ̄(ta, tb), has been
introduced:

σ̄2(ta, tb) ≡ σ2
ata + σ2

b (tb − ta)
tb

. (20)

Note that σ̄(0, T − t) = σb and σ̄(T − t, T − t) = σa.
This property can be used for compacting the solution.
We can now perform a typical integration by parts inside
the integral sign and recover:

C(t, S, σa;K,T ) = CBS(t, S, σb;K,T )

+
∫ T

t

du e−λ̄(u−t)∂uC
BS(t, S, σ̄(u− t, T − t);K,T ).

(21)

The main benefit of the last operation is that equation (21)
can be easily combined with equation (19), thus yielding:

C(t, S, σ;K,T ) = CBS(t, S, σb;K,T )

+ 1t<τ

∫ T

t

du e−λ̄(u−t)∂uC
BS(t, S, σ̄(u− t, T − t);K,T ).

(22)

Note that this result is not sensitive to whether τ is smaller
than T , or not. It is also striking that it is λ̄, not λ, which
appears in the final formula. This is similar to the well-
known fact that is not µ but r which counts in the valua-
tion of the option in the Black-Scholes scheme. This latter
is often interpreted as if the constant drift in equation (1)
was in fact rdt. In Section 7 we will discuss further how
the former replacement is equivalent to considering that
the market acts as if the mean transition time is just λ̄−1.

So far, we have reproduced the framework mentioned
by Herzel [14], and obtained the same formal solution to
the problem when the market price of volatility risk is con-
stant. To be strict, we have to point out that our output
agrees with his expression for t = 0, which is, although un-
numbered, the first option price given in Herzel’s paper.
After that, he generalizes his formulation for any later
instant of time, 0 ≤ s ≤ T . Unfortunately, there is an
erratum in this extension. The limits in the definite inte-
gral in his equation (4.28) should thus be 0 and T − s,

instead of s and T . In an equivalent way, t should be re-
placed by t− s, with the rest of the formula, including dt,
unchanged.

Depending on the payoff function, the integral that
appears in equation (22) can be computed, and analytic
expressions for the option price can be obtained. Let us
consider the two examples that appear at the beginning
of the present section: the plain vanilla call, and the more
exotic Binary call. In both cases, the explicit form of the
final expression depends on the relative values of σa, σb

and λ̄. Thus, if 0 < σb < σa or 0 < λ̄ <
σ2

b−σ2
a

8 , the price
of the classical European call reads:

C(t, S, σ;K,T )/S =

N
(
α

σb
+ σbβ

)
− e−2αβN

(
α

σb
− σbβ

)

+ 1t<τ
β

γ
exp

(
1
2
(γ2 − β2)σ2

b − αβ

)

×
{
eαγ

[
N

(
α

σa
+ σaγ

)
−N

(
α

σb
+ σbγ

)]

− e−αγ

[
N

(
α

σa
− σaγ

)
−N

(
α

σb
− σbγ

)]}
, (23)

whereas if 0 <
σ2

b−σ2
a

8 < λ̄, the solution, although real,
involves the use of complex calculus:

C(t, S, σ;K,T )/S =

N
(
α

σb
+ σbβ

)
− e−2αβN

(
α

σb
− σbβ

)

+ 1t<τ
2β
γ̄

exp
(
−1

2
(γ̄2 + β2)σ2

b − αβ

)

×�
{
eiαγ̄

[
N

(
α

σa
+ iσaγ̄

)
−N

(
α

σb
+ iσbγ̄

)]}
.

(24)

In writing these results, we have shuffled the free vari-
ables and parameters in order to keep the expressions as
readable as possible, only defining four new quantities:

α =
log(S/K) + r(T − t)√

T − t
,

β =
1
2

√
T − t,

γ =

√
2λ̄(T − t)
σ2

a − σ2
b

+ β2, and

γ̄ =

√
2λ̄(T − t)
σ2

b − σ2
a

− β2.

We have also introduced the cumulative distribution func-
tion for a Normal probability density:

N (·) =
1√
2π

∫ ·

−∞
e−u2/2du,

or its natural extension to the complex plane when needed.
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The border-line case λ̄ = σ2
b−σ2

a

8 , can be obtained from
either of the two previous expressions for C(t, S, σ;K,T ),
because when t �= τ the price of the option is continuous
in all variables and parameters. We must only set γ = 0
or γ̄ = 0, depending on the starting point:

C(t, S, σ;K,T )/S =

N
(
α

σb
+ σbβ

)
− e−2αβN

(
α

σb
− σbβ

)

+ 1t<τ2β exp
(
−1

2
β2σ2

b

)

×


σae

− α2

2σ2
a − σbe

− α2

2σ2
b√

2π
+ α

[
N

(
α

σa

)
−N

(
α

σb

)]
 .

(25)

In the special case that the discounted moneyness is equal
to one, i.e. S = Ke−r(T−t) or α = 0, equation (25) reduces
to a very simple expression:

C(t, S, σ;Ser(T−t), T )/S = 2N (σbβ) − 1

+ 1t<τ2β exp
(
−1

2
β2σ2

b

)
×

{
σa − σb√

2π

}
.

The results for a Binary or Digital call are very similar
to the preceding ones in overall terms. For the first range,
0 < σb < σa or 0 < λ̄ <

σ2
b−σ2

a

8 ,

C(t, S, σ;K,T )er(T−t) = N
(
α

σb
− σbβ

)

+ 1t<τ
1
2

exp
(

1
2
(γ2 − β2)σ2

b + αβ

)

×
{(

1 − β

γ

)
eαγ

[
N

(
α

σa
+ σaγ

)
−N

(
α

σb
+ σbγ

)]

+
(

1 +
β

γ

)
e−αγ

[
N

(
α

σa
− σaγ

)
−N

(
α

σb
− σbγ

)]}
.

(26)

while, in the complementary case 0 <
σ2

b−σ2
a

8 < λ̄, the
price of the option is:

C(t, S, σ;K,T )er(T−t) = N
(
α

σb
− σbβ

)

+ 1t<τ exp
(
−1

2
(γ̄2 + β2)σ2

b + αβ

)

×�
{
γ̄ + iβ

γ̄
eiαγ̄

[
N

(
α

σa
+ iσaγ̄

)
−N

(
α

σb
+ iσbγ̄

)]}
.

(27)

The limit case λ̄ = σ2
b−σ2

a

8 can easily be reproduced
from the expressions above. Note that the same definitions
of α, β, γ and γ̄ apply.

In Section 7 we will present some numerical examples
of the explicit solutions we have introduced here.

6 New market prices of risk

In this section, we will consider some non-constant candi-
dates for Ω(t, S). The main challenge is choosing suitable
functions, not only from the mathematical point of view,
but also with a clear financial interpretation. They should
represent a credible reaction of the market to the risk as-
sociated with the possible change in volatility. Otherwise,
the new results will be merely an exercise in applied math-
ematics.

For instance, it is easy to notice that a wide range
of new solutions can be obtained following an approach
very similar to the development carried out in the previous
section, with little extra effort. Let us consider the case of
a Ω depending on all the time magnitudes involved:

Ω = η(t; t0, T ),

with η(t; t0, T ) > 0. The solution for t = t0 is simply2:

C(t0, S0, σ;K,T ) = CBS(t0, S0, σb;K,T )

+ 1t0<τ

∫ T

t0

du e
− ∫

u
t0

dt′η(t′;t0,T )

× ∂uC
BS(t0, S0, σ̄(u− t0, T − t0);K,T ). (28)

With this formal expression we can generate an infinite
set of valid prices, depending on the choice of an arbitrary
function. With the same spirit as in the preceding sec-
tion, we could say that the market behaves as if τ were
replaced by another random variable τ̄ , governed by the
alternative law:

P (t0 < τ̄ ≤ t) = 1 − e
− ∫

t
t0

dt′η(t′;t0,T )
.

However, it should be recalled that this change does not
affect the transition time itself, which depends on τ , but
the market’s perception of the probability of the change
taking place. We will consider this interpretation in more
depth later.

A plausible requirement that may help us to discard
candidates is to demand that the final solution depends on
T−t0. This means that η(t; t0, T ) = f(t−t0;T−t0), which
is a rather soft constraint. In Appendix A we will consider
a case in which an investor tries to reproduce the future
behaviour of options using only shares and bonds. Since
there is no traded asset other than options that quote the
volatility, this effort will be in vain. However, the option
price obtained:

C̄(t0, S0, σ0;K,T ) = CBS(t0, S0, σb;K,T )

+ 1t0<τ

∫ T

t0

du
1 + e−λ(u−t0)

2

× ∂uC
BS(t0, S0, σ̄(u− t0, T − t0);K,T ), (29)

2 Given that, up to this point, the notation did not lead
to misunderstanding, we have not stressed the difference be-
tween t0, the actual time in which the options is evaluated,
and t, a generic instant of time, t0 ≤ t ≤ T .
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is still valid. It is straightforward to check that if we
replace

η(t; t0, T ) = η(t− t0) = λ
e−λ(t−t0)

1 + e−λ(t−t0)
, (30)

in equation (28), we will recover equation (29). Further-
more, we can rewrite this expression in terms of the
Black-Scholes price for σ = σa, and Cλ(t0, S0, σ0;K,T ),
the solution found in the previous section for the constant
case λ̄ = λ:

C̄(t0, S0, σ0;K,T ) =
1
2

[
CBS(t0, S0, σa;K,T )

+ Cλ(t0, S0, σ0;K,T )
]
. (31)

This expression may help us to reinterpret the result
from another point of view. The first term would be the
fair price if the volatility did not change after the jump,
whereas the second one is possibly the most neutral choice
for pricing the new risk. This investor thus acts as if he
was skeptic about the correctness of the model, as if he
really thought that when the transition takes place (e.g.
when the expected news are published) σ may or may not
change. And he weights the two scenarios in the same way.

Clearly, we can obtain solutions for the entire range
of confidence levels of the accuracy of the model. Thus,
if we set q as equal to the “likelihood” that the volatility
actually varies when the jump takes place, the function η
that expresses this risk evaluation is

η(t; t0, T ) = η(t− t0) = λ
e−λ(t−t0)

(1 − q)/q + e−λ(t−t0)
.

The only constraint is that we cannot neglect all the risk
by merely setting q = 0. Therefore any 0 < q ≤ 1 leads to
a valid price,

C̄(q)(t0, S0, σ0;K,T ) = (1 − q)CBS(t0, S0, σa;K,T )

+ qCλ(t0, S0, σ0;K,T ),

although in the absence of further information q = 1/2 and
q = 1 seem to be the only privileged values. In Section 7
we will explore the consequences of this reluctance by the
investor to accept equation (2) as a valid description of
the future behaviour of the volatility.

We will end this section by stating another possible
scenario. We will focus on the case that the volatility risk
premium is determined by the price of the stock, without
any explicit temporal evolution prior to the jump. We may
thus assume that Ω depends on the two currency-related
magnitudes, the variable S and the parameter K:

Ω = Λ(S;K),

with Λ(S;K) > 0. Since the market price of the volatility
risk is not a function of T , we can still fully hedge the
changes in the price of a given option using other options
with different expiration time as well as shares and bonds.
The presence of the striking price in the risk premium

brings an interesting new dimension to the problem. Let
us analyse a simple example in which:

Λ(S;K) = λa1S<K + λb1S≥K , (32)

with λa, λb > 0. Such a choice seems to have its natural
origin in a market in which the practitioners think that it
is more or less probable that the expected event will take
place depending on the fact that the stock is out of the
money, i.e. S < K, or not.

In order to show that this interpretation has some fi-
nancial meaning, we will present a fictitious practical sit-
uation. Let us imagine, for instance, that a firm plans to
take over another one in the near future, but a time that
is not yet apparent. The reason for expecting a higher
volatility of the security after the purchase can be eas-
ily understood if the resulting company is more exposed
to economical or political fluctuations. This could be a
canonical situation for applying a constant volatility risk
premium. Let us assume nonetheless that the firm has sold
a large amount of calls in the past with the same striking
price. If the price of the corporate shares exceeds the level
defined by the strike of these options at maturity, the com-
pany will need some reserve of funds for covering the de-
mands of the option holders. The market could therefore
consider that the takeover might be delayed within this
frame.

We have decided to study the case in which λa and λb

are constant, instead of any other smoother transition
(which may have a fit better in the example given) for
two main reasons. On the one hand it will be easier to
analyse the recently introduced modification, in terms of
the previous results. A naive reasoning leads to the conclu-
sion that the option price in this circumstances must fulfil
C(t0, S0, σ0;K,T ) ∼ Cλa(t0, S0, σ0;K,T ) if S0 	 K, and
C(t0, S0, σ0;K,T ) ∼ Cλb (t0, S0, σ0;K,T ) when S0 
 K.
On the other hand, it appears at first glance that we could
adapt the procedures above in order to solve this problem.
Unfortunately that is not the case as far as we know. The
fact is that we have had to resort to numerical computa-
tion for obtaining the results presented below.

7 Numerical analysis

In this section we will analyse and compare the different
solutions we have found, and eventually represent some of
them. Since all the possible candidates to be the fair price
collapse to the Black-Scholes solution if the jump takes
place, we will implicitly assume that t0 < τ from now on.

We will follow the guidelines of the previous exposi-
tion and thus we will begin dealing with constant volatil-
ity risk premium. Firstly, we will show the example of a
typical European call. Remember that in this case we have
closed expressions —equation (23) or equation (24)— for
evaluating the option price. However, for the sake of com-
pleteness, we will also consider the output of numerical
methods based on statistical formulas. Within this ap-
proach we must express the option price in the form of



M. Montero: Partial derivative approach for option pricing in a simple stochastic volatility model 149

an expected value of the discounted payoff, under some
appropriate probability density function:

C(t0, S0, σ0;K,T ) = EQ[e−r(T−t0)Φ(S(T );K)]. (33)

If we want C(t0, S0, σ0;K,T ) = Cλ̄(t0, S0, σ0;K,T ) the
final asset value S(T ) in equation (33) must be expressed
in the following terms

S(T ) = S0e
(r−σ2

a/2)(T−t0)+σaW (T−t0)1T<τ̄

+ S(τ̄ )e(r−σ2
b/2)(T−τ̄)+σb[W (T−t0)−W (τ̄−t0)]1T≥τ̄ ,

with
S(τ̄ ) = S0e

(r−σ2
a/2)(τ̄−t0)+σaW (τ̄−t0).

Thus, under the equivalent measure Q, µ shall be replaced
by r, as usual, and a new Brownian motion with zero mean
and variance equal to t−t0, must be introduced: W (t−t0).
The random variable τ̄ follows also an exponential law:

P (t0 < τ̄ ≤ t) = 1 − e−λ̄(t−t0).

As we have already argued, when λ̄ �= λ we can consider
in practice that the model is not accurate in forecasting
the actual mean transition time, and that it should be
replaced by another value. This set-up is suitable for per-
forming Monte Carlo simulations, and comparing them
with the exact results. Since it is not our intention to add
superfluous complexity we will concentrate in the case that
the original λ (and τ) is used. In Figure 1 we therefore
find, the numerical estimation of the vanilla call price to-
gether with the graphical representation of equation (24)
for the parameter set reported there, showing an excellent
agreement.

Also in Figure 1 we present the results associated with
another criterion for the volatility risk premium: the time-
dependent function that leads to equation (31). In this
case, if we model the share price at maturity according to

S(T ) = S0e(r−σ2
a/2)(T−t0)+σaW (T−t0)1T<τ

+
1
2
S(τ)e(r−σ2

a/2)(T−τ)+σa[W (T−t0)−W (τ−t0)]1T≥τ

+
1
2
S(τ)e(r−σ2

b/2)(T−τ)+σb[W (T−t0)−W (τ−t0)]1T≥τ ,

with the same specifications for τ , W (t − t0) and S(τ)
as in the past scenario, we can use equation (33) to re-
cover C̄(t0, S0, σ0;K,T ). Note once again that this partic-
ular choice for the market assessment of risk leads, when
τ < T , to an expression for S(T ) that is the arithmetic
mean of the two possible paths: one in which the volatil-
ity is σb right after the jump, and the other that considers
that σa remains unchanged. This is why we have stressed
the necessity of dissociating the existence of a distinctive
time value τ , and the innovation that it carries. We can be
sure that forthcoming news may affect the market and, at
the same time, can only guess about its final effect. Thus
equation (30) leads to a more conservative risk analysis, in
the sense that this price is nearer the Black-Scholes value
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Fig. 1. Option pricing for European calls. In this figure we
present the results corresponding to the payoff Φ(S; K, T ) =
max(S(T )−K, 0), in terms of the initial moneyness S0/K. We
plot curves for two different maturities: (a) T −t0 = 0.25 years,
and (b) T − t0 = 0.05 years. The numerical value of the other
parameters are r = 5%, σa = 10%, σb = 20%, λ−1 = 0.1 years,
and K = 100, in suitable currency units. The red line corre-
sponds to Cλ(t0, S0, σ0; K, T ) while the blue line was obtained
using C̄(t0, S0, σ0; K, T ). In the main text we argue that this
prescription for pricing the volatility risk can be explained as
a lack of confidence in the actual change in volatility after the
expected event. Note that the first price is more similar to
the plain Black-Scholes price with σ = σb, and that conversely
the second method leads to a price closer to the Black-Scholes
price for σ = σa. The discrepancy is reduced as the matu-
rity time approaches. The solid lines were computed on the
basis of exact expressions, while the dots were obtained by
using an alternative Monte Carlo procedure, averaging over
100 000 replicas.

corresponding to σa, whereas Cλ(t0, S0, σ0;K,T ) antici-
pates the future change in the volatility more intensely.
This explains the behaviour of the different call prices ob-
served in Figure 1. Looking at Figures 1a and b, we can
check that the two prices converge to the no-jump solu-
tion as the maturity horizon comes closer. In all instances
the simulated prices fit the theoretical curves very well.
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Fig. 2. Option pricing for Binary calls. In this figure we
present, in terms of the initial moneyness S0/K, the results
corresponding to the payoff Φ(S; K, T ) = 1S(T )≥K . We again
plot curves for two different maturities: (a) T − t0 = 0.25
years, and (b) T − t0 = 0.05 years. The numerical value of the
other parameters are the same as in Figure 1. We also repeat
the colour codes, and present both exact results (solid lines)
and numerical approximations (dots), computed with the same
methods and technical specifications.

In Figure 2 we illustrate the case of a Binary call, under
the two previous volatility risk appreciations: the constant
premium that leads to equations (26) and (27), and the
more cautious strategy represented by C̄(t0, S0, σ0;K,T ).
The main features remain unchanged with just one pecu-
liarity: all prices seem to converge for a given value of the
moneyness. Unfortunately, this is just an optical effect.
The two Black-Scholes prices coincide when α = σaσbβ.
The other crossing points are within a narrow interval that
includes this value, but do not fully match up.

The stock-dependent evolution of the volatility risk
measure is introduced in Figure 3. In the case analysed —
equation (32) with constant values for λa and λb— we have
not obtained formal expressions of any kind for the price of
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Fig. 3. Option pricing for stock-dependent volatility risk val-
uation. This figure shows some results within a market where
the price for the volatility risk switches between two lev-
els depending whether the stock is over the strike or not:
Λ(S; K) = λa1S<K + λb1S≥K . We represent the price of the
option, in terms of the initial moneyness S0/K, for two pay-
offs: (a) European call, and (b) Binary call, when maturity
is T − t0 = 0.25 years. The (dark) reference lines correspond
to Cλ(t0, S0, σ0; K, T ) in two very different scenarios. In the
first one (λ−1

1 = 1.0 years) it is quite unlikely that the jump
will happen, whereas in the second one (λ−1

2 = 0.1 years) the
turnabout is more conceivable. Solid lines are the result of a
numerical integration of the partial differential equations while
the dots were computed using Monte Carlo methods. The other
parameters are the same as in the previous figures.

the option. We do not even have an exact formula for S(T )
in equation (33) which we can take as a starting point of a
Monte Carlo estimation. We must therefore rely on biased
numerical methods. The approach we have taken for solv-
ing the problem has in all cases implied the discretization
of the time interval: t0, t1, · · · , tN−1, tN = T . In practice
we have set N = 250, and used gaps with the same length.
The total number of replicas used within the Monte Carlo
framework was kept within 100, 000. Each value of S(T )
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was computed following the iterative procedure:

S(ti+1) = S(ti)e(r−σ2
a/2)(ti+1−ti)+σaW (ti+1−ti)1ti+1<τ̄

+ S(ti)e(r−σ2
b /2)(ti+1−ti)+σbW (ti+1−ti)1ti+1≥τ̄ ,

where W (ti+1 − ti) is a Brownian motion with zero mean
and variance equal to ti+1− ti, and the random variable τ̄
fulfills the conditional law:

P (τ̄ ≤ ti+1|ti < τ̄) = 1 − e−Λ(S(ti);K)(ti+1−ti).

The partial differential equations were numerically figured
out backward in time on a exponential grid of 100, 001
points, centred around K. The initial conditions were the
contingent claims in (16) and (17), with their correspond-
ing boundary conditions. The vanilla call price was ob-
tained using a typical fully explicit FTCS procedure: a
symmetrical finite-difference approximation. The Binary
call was a little more delicate, and the use of a Crank-
Nicholson scheme was necessary in the first 175 time steps.

However, the main fact is that both numerical meth-
ods (FTCS and Monte Carlo) lead eventually to very sim-
ilar results. The behaviour of these solutions is as we pre-
dicted at the end of Section 6: the price gradually attains
Cλa (Cλb) when the asset is below (above) the strike.

8 Conclusions

We have revisited the framework stated by Herzel, in
which the dynamics of one asset S is driven by a log-
normal diffusion equation with a stochastic volatility pa-
rameter σ. The volatility of this stock may jump at a ran-
dom time τ from a fixed initial value σa to another fixed
final value σb. No more than one such jumps is allowed.
This event can model the future publication of crucial in-
formation related to this specific market, for instance.

We have introduced a procedure for obtaining fair op-
tion prices, different from that used by Herzel in his orig-
inal manuscript. There, the author intensively exploits
probability arguments for finding the necessary and suf-
ficient conditions that the model must fulfil to be com-
plete and arbitrage-free. He thus derives the equivalent
martingale measure. We have employed another technique
broadly used in this field. We have determined the partial
differential equations that, according to Itô’s formula, the
option price must fulfil. We have shown that the use of
a secondary option completes the market. After that, we
have required the market to have no arbitrage and we have
found the exogenous function that measures the market
price of the volatility risk. We have explored the output
for several choices of this function and, incidentally, we
have amended some of the results presented in the origi-
nal reference, where the risk premium was null.

In fact, one of the biggest benefits of our approach is
when considering more sophisticated prescriptions for the
market price of volatility risk. We have not only obtained
closed formulas in such a cases, but we have also been able
to interpret their financial meaning. We have seen how a

choice for the volatility risk price can be translated into
a lack of confidence in the model premises. For instance,
a constant risk price other than zero plays the same role
of a redefinition in the mean transition time of the jump
process.

In particular, we have studied a solution in some de-
tail that can be understood as the response of a suspi-
cious investor, who admits the possibility that volatility
will stay on the same level, although the jump (that is, the
announcement) has taken place. We have also presented
another scenario in which the volatility risk premium is
a function of the value of the underlying asset. The final
picture is equivalent to a market where the possibility that
the transition takes place is felt to be more or less likely
depending on the present price of the shares. Some plots
with actual examples complete the exposition.

I wish to thank Josep Perelló for directing me to Herzel’s origi-
nal paper, and for many valuable discussions. The comments of
Arturo Kohatsu-Higa and Jaume Masoliver have improved the
manuscript, making it more readable. AKH also encouraged
me to look for explicit analytic solutions. This work has been
supported in part by Dirección General de Investigación under
contract BFM2003-04574 and by the Generalitat de Catalunya
under contract 2001SGR-00061.

Appendix A

We have seen that the process for valuing the option relies
on the investor’s opportunity to replicate the variations of
the call price with an alternative portfolio. The buyer of
this equivalent portfolio must nonetheless hold secondary
options, options with the same underlying but different
contract specifications. This is quite a circular situation.
Let us assume for a moment that an investor wants to
use only shares and bonds in order to hedge the option.
It is obvious that he will fail in this task by definition,
because this is only feasible if the jump time is determin-
istic. But in this case, equation (3) and all the derived
expressions were no longer correct. We should simply con-
sider a log-normal model with time-dependent volatility
instead. In this Appendix we present an alternative ap-
proach that tries to remove the risk associated with the
volatility change in a portfolio without secondary calls.
We will still assume that τ is a stochastic magnitude, we
will obtain results conditioned to the value of this variable,
and we will finally take expectations. It will be a heuristic
procedure in the sense that, in general, such a practice
may lead to an incorrect option price. In the main body
of the article we will check that this is not the case here.

We will therefore start by recovering equation (13) and
directly setting ψ̄ = 0:

dY = ∆C (χdt+ d1t≥τ ) .

We now require that dY = 0. This constraint leads to:

χ = − d

dt
1t≥τ = −δ(t− τ),
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where the Dirac’s Delta δ(·) has been used. The corre-
sponding main equation is then:

∂tC+
1
2
σ2S2∂2

SSC−rC+rS∂SC+∆Cδ(t−τ) = 0. (A.1)

We will search for a solution taking the form

C(t, S, σ;K,T ) =

e−r(T−t)U

(
T − t, log(S) +

(
r − σ2

2

)
(T − t);K

)
,

based upon the two variable function U(t∗, x;K), which
must fulfil the following partial equation:

∂t∗U − 1
2
σ2∂2

xxU = ∆Uδ(T − τ − t∗).

We therefore consider the Fourier-Laplace transform of
U(t∗, x;K),

Û(s, ω;K) =
∫ +∞

0

dt∗e−st∗
∫ +∞

−∞
dx eiωx U(t∗, x;K),

that follows the simpler equation:

sÛ − Ũ0 +
1
2
σ2ω2Û −∆ŨT−τe

−s(T−τ)1τ≤T = 0,

where the tilde stands for the Fourier transform of the cor-
responding object. Thus Ũ0(ω;K) ≡ Ũ(t∗ = 0, ω, σ;K),
and it does not depend on σ. On the other hand,∆ŨT−τ ≡
Ũ(T −τ, ω, σb;K)−Ũ(T −τ, ω, σa;K). Now we can isolate
all the explicit dependence on the Laplace variable s,

Û(s, ω, σ;K) =
1

s+ σ2ω2/2

×
{
Ũ0 +∆ŨT−τe

−s(T−τ)1τ≤T

}
,

and perform an inverse transformation,

Ũ(t∗, ω, σ;K) = Ũ0e
−σ2ω2t∗/2

+∆ŨT−τe
−σ2ω2(t∗−T+τ)/21T−t∗<τ≤T . (A.2)

Obviously, the second term only makes a contribution
when the jump is made between t, and the maturity, T .
When t∗ ≤ T − τ , i.e. τ ≤ t and σ = σb, equation (A.2)
reduces to,

Ũ(t∗, ω, σb;K) = Ũ0e
−σ2

b ω2t∗/2 = ŨBS(t∗, ω, σb;K),

which leads to

C(t, S, σb;K,T ) = CBS(t, S, σb;K,T ),

a riskless price.
When t∗ > T − τ , i.e., when t < τ and σ = σa, but

τ > T , the main equation also takes a simple form,

Ũ(t∗, ω, σa;K) = Ũ0e
−σ2

aω2t∗/2 = ŨBS(t∗, ω, σa;K).

In this case, since the change in volatility occurs after
the maturity of the contract, the price reduces to a plain
Black-Scholes model without any jump in volatility,

C(t, S, σa;K,T |T < τ) = CBS(t, S, σa;K,T ).

This scenario thus again has no risk associated with it.
Finally, when t∗ > T − τ and τ ≤ T , all the terms

contribute to a more complex expression,

Ũ(t∗, ω, σa;K) = Ũ0e
−σ2

aω2t∗/2+∆ŨT−τe
−σ2

aω2(t∗−T+τ)/2.
(A.3)

It should be recalled that ŨT−τ is a term that counts
only for the variation in Ũ due to the change in the
volatility, when it takes place. Thus Ũ(T − τ, ω, σb;K) =
ŨBS(T − τ, ω, σb;K). The other term can be obtained by
self-consistency. We will start from equation (A.3) and
take a limit:

Ũ(T − τ, ω, σa;K) = lim
t∗→T−τ

Ũ(t∗, ω, σa;K) =

lim
t∗→T−τ

Ũ0e
−σ2

aω2t∗/2 +∆ŨT−τe
−σ2

aω2(t∗−T+τ)/2,

which leads to

Ũ(T − τ, ω, σa;K) =
1
2

[
ŨBS(T − τ, ω, σa;K) + ŨBS(T − τ, ω, σb;K)

]
.

Now we will introduce this result back into equation (A.3),
and obtain

Ũ(t∗, ω, σa;K) =
1
2
Ũ0

[
e−σ2

aω2t∗/2 + e−σ̄2(t∗−T+τ,t∗)ω2t∗/2
]
,

where σ̄(ta, tb) is the same that in equation (20). Therefore

C(t, S, σa;K,T |t < τ ≤ T ) =
1
2

[
CBS(t, S, σa;K,T ) + CBS(t, S, σ̄(τ − t, T − t);K,T )

]
.

Finally, in order to obtain an expression for t < τ that
does not depend on future information, we will compute
the expected value of the previous conditioned solutions:

C̄(t, S, σa;K,T ) = E [C(t, S, σa;K,T |τ = u)]

=
λ

2

∫ T

t

du
[
CBS(t, S, σa;K,T )

+ CBS(t, S, σ̄(u− t, T − t);K,T )
]
e−λ(u−t)

+ λ

∫ +∞

T

duCBS(t, S, σa;K,T )e−λ(u−t),

an expression that reduces to

C̄(t, S, σa;K,T ) = CBS(t, S, σb;K,T )

+
∫ T

t

du
1 + e−λ(u−t)

2
∂uC

BS(t, S, σ̄(u− t, T − t);K,T ).

a formula that does not fulfil equation (A.1), but which is
still a valid solution.
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